

Varioslide® The solution for multiple applications

www.interseal.fr

1

About Varioslide® seals

Overview Discover your Varioslide® seal Typical uses of Varioslide® General operating conditions

2 The 10 main Varioslide® seal formats

3 Silicone filling, invaluable for avoiding contamination

4 Materials used in Varioslide® seals

5 Comparison chart of material properties and functions

6 Varioslide® series and springs

7 Selecting the right Varioslide® Main lip shapes Selection chart

8 Pressure, temperature, working clearance

9 Extrusion prevention devices

10 Surface state of mechanical parts Hardness of mating surface Surface roughness

11 Recommended diameters per section profile

12 Seal housing construction Radial types – external (rod) fitting **13** Seal housing construction Radial types – internal (cylinder) fitting

14 Seal housing construction Radial types – flanged seals

15 Seal housing construction Axial types – face seals

16 Assembly & fitting precautions

17 Varioslide® models – 200 series

18 Varioslide® models – 400 series

19 Varioslide® models – 500 series

20 Varioslide® models – 700 series

21 Varioslide® models – 600 and 900 series

22 Study and design of special profiles

23 Varioslide® product coding system

🍪 About Varioslide® seals

Overview

Varioslide® seals are designed to provide a leak-tight joint in extreme conditions.

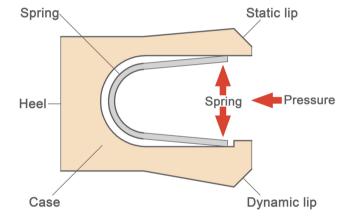
They are used in all types of plant that transfer gases or liquids under pressure.

- Made to withstand the most aggressive chemical agents
- Outstanding performance at high and low temperatures
- Controlled friction, even when running dry
- Suitable for the highest pressures as well as for vacuum
- Can be made in large diameters while taking up little room
- Very long service life and even longer shelf life (unlike elastomers)

Discover the Varioslide® seal for you

- The case is machined from high-performance polymer
- The stainless steel spring presses the case lips against the surface being sealed, taking up wear while correcting any concentricity errors
- Multiple case shapes and materials and the many spring types and steel grades make them easily adaptable to different uses
- The pressure differential helps the case expand
- The heel is creep resistant and can be reinforced for use in high stress conditions
- The dynamic lip provides a perfect seal with sliding, rotating, or oscillating surfaces
- The static lip ensures perfect sealing against the base of the groove. Both lips can be static when used between flange faces or similar

General operating conditions


Temperature limits : -250 to +260°C Maximum pressure in static use : < 120 MPa Maximum linear motion speed : < 15 m/s Maximum rotary motion speed : < 2,5 m/s Fluids : just about any

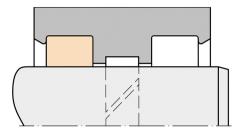
Important :

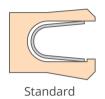
These usage limits do not necessarily apply all at the same time.

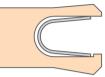
Maximum pressure or maximum speed can be attained only after analysing all the parameters: nature of fluid, temperature, case profile and material, mating surface material and roughness, working clearance, etc.

1

Typical uses of Varioslide

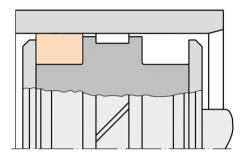

The huge number of different case and spring geometries, coupled with a wide choice of polymers, make Varioslide® seals a good fit for almost all applications across a wide range of industries :

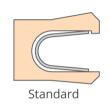

- Chemical
- Pharmaceutical
- Food
- Mechanical
- Aerospace
- Automotive
- Oil and gas

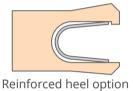

etc.

😵 The 10 main seal formats

Figure 1. Radial types for rod outside diameters, main use : linear motion

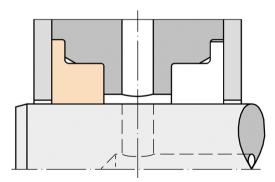


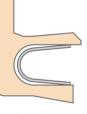

Reinforced heel option



Square lip for squeegee action

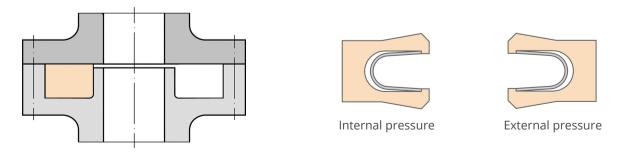
Figure 2. Radial types for cylinder bores, main use : linear motion





Square lip for squeegee action

Figure 3. Radial flanged types for spindles, main use : rotary motion



Standard

Option lèvre dynamique droite (effet de raclage)

Figure 4. Axial type (face seal) for flanges, main use : static or slow turning

The Varioslide® range contains a huge number of models in various shapes, dimensions, and spring types. Enquire with our engineering service...

Silicone filling, invaluable for avoiding contamination

Our Varioslide® seals are also available in a silicone filled (SF version).

To prevent any particles accumulating, the spring seat in this version is filled with HT silicone.

The SF design is mainly intended for applications where potential contamination is an issue, as in the food, pharma, and cosmetic industries.

It can also be useful in seals for viscous or particle laden products that could cause clogging of the spring seat and stop the seal working efficiently.

<u>To summarize :</u>

- \rightarrow Decreases empty space
- \rightarrow Easy to clean and sterilize
- \rightarrow Silicone filling assists the spring action

The silicone used in the standard SF version is usually coloured red. A white or translucent version can also be used depending on production requirements.

Irrespective of colour, all our silicones comply with FDA 21 CFR 177.2600 regulations.

Please indicate SF (silicone filled) in your enquiries where relevant

Materials used in Varioslide® seals

Code	Material		nuous °C	Advantages/Restrictions	Applications	Colour
		_	+			
4702	Premium grade PTFE	200	210	 Optimum chemical resistance Minimal friction Low gas permeability Limited wear and pressure resistance 	Static, low pressure Dynamic, intermittent movements with very low P.V Moderate vacuum, cryogenic gases	White
5401	High density PTFE	200	220	Optimum chemical resistance Optimum chemical resistance Minimal friction → compared with standard PTFE: Impermeability to the higher gases Improved creep and extrusion resistance Better surface state	 Static, medium pressure Dynamic possible, with provisos (low P.V) High vacuums, cryogenic gases Light gases under low pressure 	White
4708	Modified PTFE	200	210	 Excellent chemical resistance Minimal friction → Compared with standard PTFE: Improved wear resistance Improved extrusion resistance Identification by colour 	 Large range of use Static, medium pressure Dynamic low P.V All fluids Light gases under low pressure, vacuum 	Turquoise
4912	Graphite PTFE	200	240	Excellent chemical resistance Non-abrasive to delicate surfaces Good thermal conductivity Low start-up friction	 Dynamic low pressures High rotational speed on hard shafts Water and steam applications Dry environments possible, with provisos 	Dark grey
5205	Mineral PTFE	110	250	Sensitive to strong oxidizers Low friction High wear resistance in dry or lightly lubricated environments Non-abrasive to delicate surfaces	 Dynamic medium P.V Dry or lightly lubricated environments 	White
4901	Carbon PTFE	185	260	 Very good all-round properties Wear resistance Pressure and extrusion resistance Thermal conductivity 	 High pressure hydraulic seals Hot water, steam, and non-lubricated environments 	Black
4902	Carbon PTFE	185	260	Sensitive to strong oxidizers Very good all-round properties Wear resistance Pressure resistance Thermal conductivity Sensitive to strong oxidizers	 Standard Varioslide® use Hot water, steam, and non-lubricated environments 	Black
4916	Carbon PTFE	155	230	Wear resistance Low friction Use limited to vacuum and low pressure gas Sensitive to strong oxidizers	 Usage very large Lubricated, non-lubricated, or even mildly abrasive environments Especially suited to water (water hydraulics) 	Dark grey
4802	Glass PTFE	190	240	Wear resistance Extrusion resistance Abrasive to delicate surfaces if speeds are high	Very good for dynamic with lubricationExcellent for anti-extrusion washers	White
4804	Glass PTFE	155	250	 Low friction High wear resistance Good pressure resistance Good extrusion resistance under vacuum and in inert gases 	 Alternative high speed applications (hydraulic) Lubricated rotating applications on hard shafts 	Bluish grey
5109	Polymer PTFE	130	260	Abrasive to delicate surfaces Wear resistance Hear resistance Non-abrasive to delicate mating surfaces Good chemical resistance	 All-round use Medium speed and pressure Use on delicate mating surfaces Inert gases, vacuum, dry environments 	Buff
5007	Bronze PTFE	150	280	High pressure and creep resistance High thermal conductivity Wear resistance Sensitive to acid and water	 Standard use in high pressure hydraulics Guide strips and anti-extrusion washers 	Greenish brown
J104	PEHD	200	80	Very good chemical resistance	Exceptional for linear motion Particle laden fluids Cryogenics Chemicals, agri-food, general mechanical	White
X101	PEEK	60	250	 High pressure resistance Good thermal resistance Fairly good chemical resistance Radiation resistance up to 10⁹ rad 	Anti-extrusion washers Special seals for linear motion	Buff

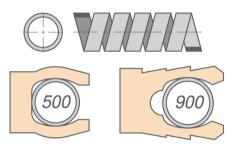
Comparison chart of material properties and functions

Relative friction	Wear resistance	(high speeds)	Pressure/extrusion resistance	Chemical resistance	Mating surface hardness HRC	P.V (MPa.m/s)	Food contact	Varioslide® configuration		Guidance	Anti-extrusion	Code	
	\rightleftharpoons	U				1		\rightleftharpoons	U	\rightarrow			
5	1	1	1	5	25	-	-	-				-	4702
4	1	1	2	5	25	-	-	-				-	5401
5	2	1	2	4	35	0.3		-	-	-		-	4708
5	2	3	3	4	25	0.45	-	-	-	-			4912
4	3	3	3	4	25	0.36	-		-	-			5205
4	4	3	4	4	50	0.48					-	-	4901
4	4	4	4	4	50	0.48	•	-	-	-	-		4902
4	5	4	4	4	45	0.48	-	-	-	-		-	4916
4	4	4	3	4	55	0.36	•	-	-	-		-	4802
5	5	5	4	4	60	0.6	•	•	•	-			4804
3	3	3	4	4	25	0.36	•	-	-	-	-		5109
3	4	3	4	3	45	0.36					•	•	5007
2	5	1	5	2	35	0.3	-	-	-		-	-	J104
1	3	1	4	3		0.12	•		•				X101

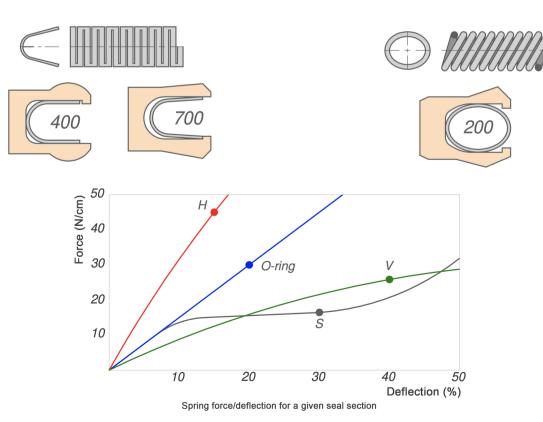
🥙 Varioslide® series and springs

An important point to consider when choosing a spring is the force/deflection ratio, which governs the essential factors of sealing force, friction, and wear.

We mainly use the three spring types shown below, namely V, S, and H.



- **RV type spring** (slotted, folded strip)
- →Fitted to our 400 & 700 series


 \rightarrow Near-linear relation between force and deflection

- ightarrow Bigger deflections possible (up to 40%), while the
- corresponding forces remain moderate
- \rightarrow Static and dynamic applications: this spring's flexibility enables it to take up small concentricity or alignment errors
- → Standard material: 1.4310 (AISI 301)*

- Ressort type HH type spring (helicoidally wound strip)
- → Fitted to our 500 & 900 series
- → Near-linear relation between force and deflection
- \rightarrow The normal deflection of 15% generates substantial force
- \rightarrow Static and dynamic low-speed applications where friction is not a crucial factor
- → Standard material: 1.4310 (AISI 301)*

- S type spring (slanted coils of round wire)
- → Fitted to our 200 series
- → Nonlinear relation between force and deflection
- \rightarrow The force stays fairly constant for deflections between 10% and 30%
- \rightarrow Dynamic applications where controlled friction is required
- → Standard material: 1.4310 (AISI 301)*

Selecting the right Varioslide®

Main lip shapes

Item 1

- \rightarrow Spring type V only (400 series) \rightarrow Low contact force
- → Low friction and reduced wear
- → Linear/rotary/oscillatory motion
- \rightarrow High speed

Item 3

→ Contact on square corner, "squeegee" action

 \rightarrow Contact over wide rounded bulge near lip end

- \rightarrow Spring types S (200 series) or V (500 series) \rightarrow Medium contact force
- → Medium friction and wear levels
- → Mainly linear motion
- → Suitable for particle laden fluids

Item 5

- → Contact over wide rounded profile, similar to Item 1
- → Spring type H (500 series) or O-ring
- \rightarrow Medium contact force
- → Fairly low friction
- → Rotary motion and static
- → Medium speed
- → Gas and cryogenics
- \rightarrow The wide rounded contact area facilitates
- fitting if there is too little bevel

→ Contact on chamfered edge

- \rightarrow Spring types S (200 series) or V (700 series)
- \rightarrow Contact and friction force greater than for Item 1
- \rightarrow Faster wear than Item 1 if the mating surface is
- not smooth enough
- \rightarrow Very good sealing
- \rightarrow Linear motion and static

Item 4

- \rightarrow Primary contact on chamfered edge backed by two squeegee-type square edges
- → Spring type H (900 series) or O-ring
- \rightarrow High contact force
- \rightarrow Higher friction than with other types
- \rightarrow Excellent sealing
- \rightarrow Fast wear if mating surface not smooth enough
- \rightarrow Linear motion and rotation \rightarrow Suitable for particle laden fluids

 \rightarrow Contact minimal en forme de pointe

 \rightarrow Force de contact importante

→ Très bonne étanchéité

 \rightarrow Applications statiques

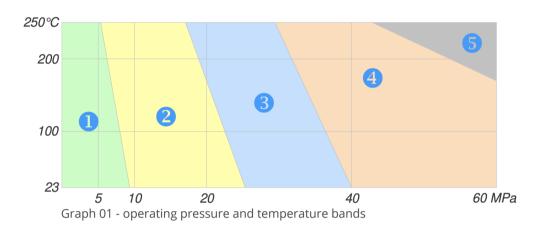
→ Gaz et fluides volatils

→ Ressort type H (série 500) ou joint O-ring

Item 6

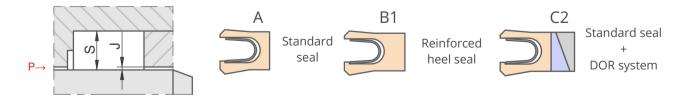
electio	lection chart													
							Seal tech	nical charact	eristics ⁽⁵⁾					
Sei	ries	Profile (1)	Spring (2)	Friction (3)	T°C (4)	Р	ressure (MPa	a)	Speed	(m/s)				
						\rightarrow	${\approx}$	C	\rightleftharpoons	Ŋ				
0	200	No	S	Medium	+300 ↑ -50	40	20	15	10	2.5				
	400	Yes	V	Low	+300 ↑ -50	40	20	15	10	2.5				
0	500	Yes	Н	Medium	+200 ↑ -100	40	20	15	2.5	0.25				
C	700	No	V	Low	+300 ↑ -50	40	20	15	10	2.5				
Ø	900	No	Н	High	+200 ↑ -100	60	30	15	2.5	0.25				
Symmetric	cal profile c	or not. Items	(2) & (3): se	e page 07										

(1) Symmetrical profile or not. Items (2) & (3): see page 07


(4) Seal working temperature, also depends on material type: see page 04

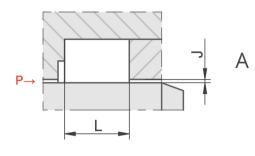
(5) Guide figures that can be exceeded with specially adapted seals (consult our technical service)

Se


🚱 Pressure, temperature, running clearance

Under high pressures, the running clearance J must be closely controlled to avoid Seal extrusion and premature failure. The extrusion risk is substantial when high pressure and temperature both exist. We offer a range of solutions to avoid extrusion risks, such as bolstering the seal's heel or adding extra washers made of high-strength Dynaflon® or Nyltec®. Our Nyltec® X101 material is recommended for highly stressed anti-extrusion washers. It is important to keep clearance "J" below the values indicated in <u>table 02</u> with respect to the operating bands depicted on <u>graph 01</u>.

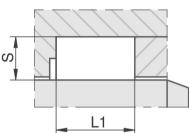
	Zone 🔿		1			2		3			4			5
	Туре 🗲	А	B1	C2	А	B1	C2	А	B1	C2	А	B1	C2	
	1.45	0.06	0.08	0.13	0.04	0.06	0.09	-	0.04	0.08	-	-	0.06	
	2.25	0.09	0.12	0.21	0.06	0.09	0.15	-	0.06	0.12	-	-	0.09	
	3.10	0.12	0.16	0.29	0.08	0.12	0.20	0.06	0.08	0.16	-	0.06	0.12	ē
	4.7 / 5.0	0.19	0.25	0.44	0.12	0.18	0.31	0.09	0.12	0.24	-	0.08	0.18	enquire
(sections)	6.0/6.1	0.24	0.32	0.57	0.16	0.24	0.40	0.11	0.16	0.32	-	0.11	0.23	e en
	7.5	0.30	0.40	0.70	0.20	0.29	0.49	0.14	0.20	0.39	-	0.14	0.29	Please
S	9.5 / 10.0	0.38	0.50	0.88	0.25	0.37	0.62	0.17	0.25	0.49	-	0.17	0.37	д
	12.5 / 12.7	0.50	0.67	1.18	0.33	0.50	0.83	0.23	0.33	0.66	-	0.23	0.49	
	15.0	0.60	0.80	1.39	0.39	0.59	0.98	0.27	0.39	0.78	-	0.27	0.58	
	20.0	0.80	1.06	1.86	0.52	0.78	1.30	0.36	0.52	1.04	-	0.36	0.77	

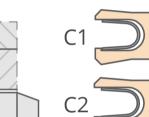

Table 02 - Clearances per usage band, type, and section

<u>Table 02</u> shows clearance values "J" for a standard height seal, reinforced heel seal, and seal with DOR system, as depicted earlier.

Housing widths for seals with anti-extrusion systems are shown in <u>table 03</u> on page 09.

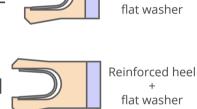
Extrusion prevention devices


Standard seal


Reinforced

+ flat washer

Standard seal


Table 03 below also shows the maximum bearable pressures in static use at ambient temperature for most seals with anti-extrusion systems.

B1

B2

Seal + bevel washer

Reinforced heel

+

inlaid washer

	L2	2				DOR	system				
	1	1									
Section	S	W	W1	W2			Maximum p	oressure (Mf	Pa) per type		
code	(Section)	0/+0.3	0/+0.3	0/+0.3	А	B1	B2	B3	B4	C1	C2
0145	1.45	2.4	3.4	4.4	10	14	-	-	-	20	-
0225	2.25	3.6	5	6.4	15	21	-	-	-	30	-
0310	3.1	4.8	6.2	7.6	20	29	33	40	40	40	50
0470	4.7	7.1	9	10.9	30	43	50	60	60	60	75
0500	5.0	7.5	9.4	11.3	30	43	50	60	60	60	75
0600	6.0	9.0	10.9	12.8	30	43	50	60	60	60	75
0610	6.1	9.5	12.3	15.1	30	43	50	60	60	60	75
0750	7.5	11.3	14.1	16.9	35	50	58	70	70	70	88
0950	9.5	14.3	17.1	19.9	40	57	67	80	80	80	100
1000	10.0	15.0	17.8	20.6	40	57	67	80	80	80	100
1250	12.5	18.8	21.6	24.4	45	64	75	90	90	90	113
1270	12.7	19.1	21.9	24.7	45	64	75	90	90	90	113
1500	15.0	22.5	25.3	28.1	50	72	84	100	100	100	125
2000	20.0	30.0	34	38	60	86	100	120	120	120	150
Table 03											

🚱 Surface state of mechanical parts

Hardness of mating surface

Seal wear greatly depends on the hardness of the mating surface. Generally speaking, the harder the surface, the better Varioslide® performs.

We recommend the following values :

Linear motion: 40–50 HRC

Rotary motion: 55–65 HRC to a depth of 0.5 mm minimum

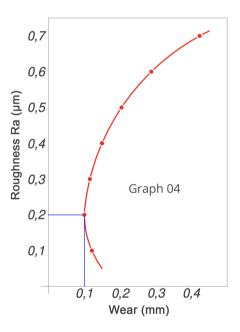
Softer surfaces (20–35 HRC) may be usable after analysis of the general parameters : motion type, speed, sealed fluid, case material, temperature, and pressure.

Please get in touch with our technical service.

Surface roughness

If a dynamic mating surface is too rough, the seal case will wear very quickly.

Conversely, if the mating surface is too smooth, it can impair creation of the PTFE hydrodynamic film that is indispensable to proper running.

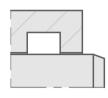

<u>Graph 04</u> shows the relation between wear and roughness. In this non-normalized test, the lowest wear was observed where the seal contacts a mating surface of roughness Ra 0.2.

For sealing applications, the Ra value alone is not enough to evaluate the mating surface. Values Rz, Rmax, and the load length ratio Rmr must also be factored in, using standard ISO 4287 as the basis.

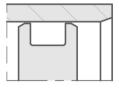
<u>Table 05</u> shows optimum Ra, Rz, and Rmax values for good sustainable running. The load length ratio Rmr can vary by a factor of four for a given Rz value, making its evaluation very important.

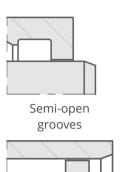
We advise an Rmr of 50% to 70%, measured at the height of a section whereby $c = 0.25 \times Rz$ (reference line Cref. 5%).

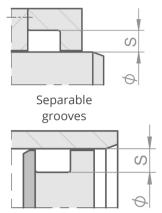
|--|

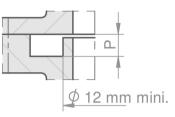


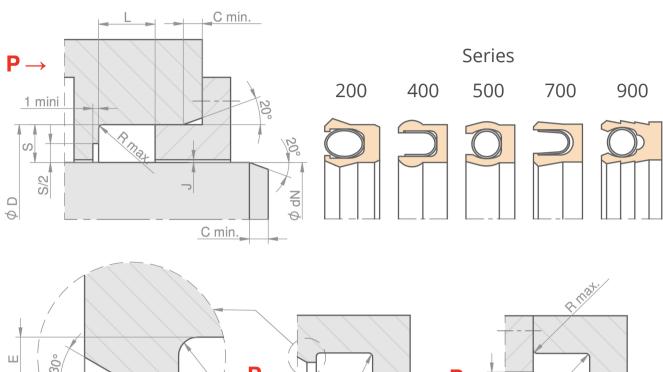
Sealed medium	Value	\rightleftharpoons	U	→I
	R _a	0.2	0.1	0.3
Cryogenics Hydrogen, helium, Freon, oxygen, nitrogen	Rz	1.6	0.63	2.2
	R _{max}	2.5	1.0	3.5
Low viscosity fluids	R _a	0.3	0.2	0.6
Water, alcohols	Rz	2.2	1.6	3.5
Gaseous nitrogen, natural gas, argon, air	R _{max}	3.5	2.5	5.0
High viscosity fluids	R _a	0.4	0.2	0.8
Crude oil, hydraulic oils, motor oils, mastics and glues	Rz	2.5	1.6	5.0
Dairy products	R _{max}	4.0	2.5	6.5


Table 05 (roughness in µm)




Recommended diameters per section profile

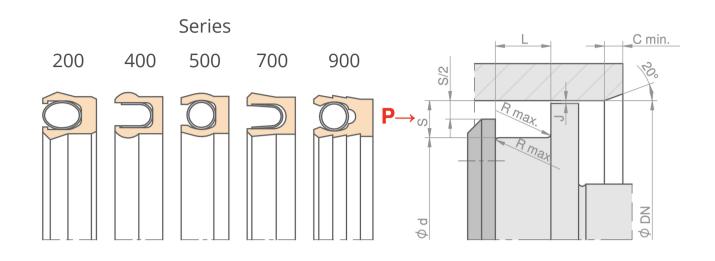

Closed grooves

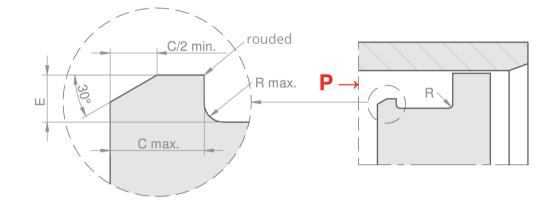


	Inside diameter of Varioslide® seal (mm)											
S or P section (mm)		Separabl	le groove		Semi-open Groove	Closed groove						
	Minimum possible	Suggested minimum	Suggested maximum	Maximum possible	Dictated minimum	Dictated minimum						
1.00	2	3	10	14	-							
1.45 - 1.50 - 1.59	4	6	14	24	20							
2.00	6	10	24	40	30							
2.25 - 2.38 - 2.50	9	14	20	50	30							
3.00 - 3.10 - 3.18	12	18	50	65	40							
3.50	16	24	65	100	50							
3.97 – 4.00	20	30	80	120	60							
4.70 - 4.76	24	40	100	140	60							
5.00	30	50	120	180	60	s ed rvice						
5.25	40	50	140	225	70	Only for 200 and 500 series Assembly tools may be needed Please consult our technical service						
6.00 - 6.10	40	65	160	250	80	l 500 ay be echnid						
6.35	50	80	200	315	90	0 anc ols ma our te						
7.00	50	80	225	355	100	or 20 ly toc ısult (
7.50	65	100	250	400	100	Dnly f semb se cor						
7.94 - 8.00	65	100	280	450	110	As						
9.50 - 9.53	100	160	400	630	120							
10.00	120	160	450	630	150							
12.00	160	225	630	1000	Х							
12.50 - 12.70	160	250	630	1000	Х							
15.00	250	355	1000	1600	Х							
15.88	280	400	1000	1600	Х							
17.50	315	500	1250	2000	Х							
19.05 - 20.00	400	630	1600	2500	Х							

 \Re

Seal housing construction Radial type - external (rod) fitting


ğ R max. **B**mat R max. <u>C/2 mi</u> ٦. rouded S/2 rouded Heel-first fitting C max.

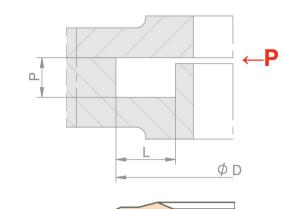

		Series			Section S		ØdN	ØD	W			Е
200	400	500	700	900	code	5	f7	H8	0/+0.3	С	R	± 0.05
					0145	1.45		Ø dN + 2.9	2.4	2.0	0.15	0.35
		-	-		0225	2.25		Ø dN + 4.5	3.6	2.5	0.20	0.45
	-	-	-		0310	3.10		Ø dN + 6.2	4.8	3.1	0.20	0.60
		-	-		0470	4.70		Ø dN + 9.4	7.1	4.2	0.25	0.80
					0500	5.00		Ø dN + 10.0	7.5	4.4	0.30	0.85
				-	0600	6.00	3e 11	Ø dN + 12.0	9.0	5.0	0.30	1.00
		-			0610	6.10	jed n	Ø dN + 12.2	9.5	5.1	0.30	1.00
					0750	7.50	Per table on page 11	Ø dN + 15.0	11.3	6.0	0.40	1.20
		-	-		0950	9.50	Perta	Ø dN + 19.0	14.3	7.4	0.45	1.50
				-	1000	10.00		Ø dN + 20.0	15.0	7.7	0.45	1.60
					1250	12.50		Ø dN + 25.0	18.8	9.4	0.55	NA
					1270	12.70		Ø dN + 25.4	19.1	9.5	0.55	NA
				•	1500	15.00		Ø dN + 30.0	22.5	11.0	0.65	NA
					2000	20.00		Ø dN + 40.0	30.0	14.0	0.85	NA

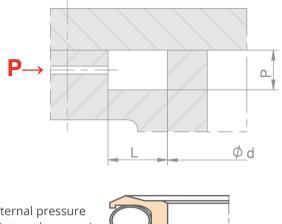
Quick manufacture Made to order. Other sections possible on request. NA: not applicable

Seal housing construction Radial type - internal (cylinder) fitting

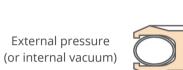


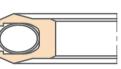
		Series			Section		Ø DN	Ød	W			Е
200	400	500	700	900	code	S	H8	h8	0/+0.3	С	R	± 0.05
		-			0145	1.45		Ø DN - 2.9	2.4	2.0	0.15	0.35
		-			0225	2.25		Ø DN - 4.5	3.6	2.5	0.20	0.45
	-	-			0310	3.10		Ø DN - 6.2	4.8	3.1	0.20	0.60
					0470	4.70		Ø DN - 9.4	7.1	4.2	0.25	0.80
					0500	5.00		Ø DN - 10.0	7.5	4.4	0.30	0.85
					0600	6.00	3e 11	Ø DN - 12.0	9.0	5.0	0.30	1.00
		-			0610	6.10	an pag	Ø DN - 12.2	9.5	5.1	0.30	1.00
					0750	7.50	Per table on page 11	Ø DN - 15.0	11.3	6.0	0.40	1.20
		-			0950	9.50	Perta	Ø DN - 19.0	14.3	7.4	0.45	1.50
					1000	10.00		Ø DN - 20.0	15.0	7.7	0.45	1.60
					1250	12.50		Ø DN - 25.0	18.8	9.4	0.55	NA
		-			1270	12.70		Ø DN - 25.4	19.1	9.5	0.55	NA
					1500	15.00		Ø DN - 30.0	22.5	11.0	0.65	NA
					2000	20.00		Ø DN - 40.0	30.0	14.0	0.85	NA
Quick	manufac	ture 🗖 M	ade to or	der. Othe	er sections pos	sible on reque	est. NA: not	applicable				

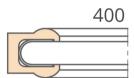

Seal housing construction Radial types - flanged seals

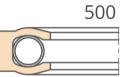


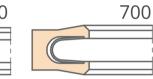
		Series			Section	S	ØdN	ØD	ØDc	W	Lc	С											
200	400	500	700	900	code	5	f7	H8	H11	0/+0.3	± 0.5	L	R										
•	-				0145	1.45		Ø dN + 2.9	Ø d + 6.8	3.8	0.4	2.0	0.15										
					0225	2.25		Ø dN + 4.5	Ø d + 8.6	4.6	0.6	2.5	0.20										
					0250	2.50		Ø dN + 5.0	Ø d + 9.0	3.6	0.8	2.8	0.20										
	•				0310	3.10		Ø dN + 6.2	Ø d + 11.0	6.0	0.7	3.1	0.20										
					0350	3.50		Ø dN + 7.0	Ø d + 12.5	4.8	1.3	3.5	0.20										
					0470	4.70		Ø dN + 9.4	Ø d + 16.8	8.5	0.8	4.2	0.25										
					0500	5.00	3e 11	Ø dN + 10.0	Ø d + 20.0	8.0	1.25	4.4	0.30										
					0525	5.25	Per table on page 11	Ø dN + 10.5	Ø d + 17.5	7.1	1.75	4.6	0.30										
					0600	6.00	able c	Ø dN + 12.0	Ø d + 22.0	8.5	1.75	5.0	0.30										
	•				0610	6.10	Pert	Ø dN + 12.2	Ø d + 23.2	12.1	1.2	5.1	0.30										
					0700	7.00		Ø dN + 14.0	Ø d + 22.0	9.5	2.75	5.8	0.35										
					0750	7.50		Ø dN + 15.0	Ø d + 27.0	11.5	2.25	6.0	0.40										
	•				0950	9.50		Ø dN + 19.0	Ø d + 28.8	14.4	2.3	7.4	0.45										
					1000	10.00		Ø dN + 20.0	Ø d + 35.0	15.5	2.75	7.7	0.45										
•					1250	12.50		Ø dN + 25.0	Ø d + 37.6	18.9	2.3	9.4	0.55										
•					1270	12.70		Ø dN + 25.4	Ød+37.6	19.4	2.3	9.5	0.55										
Quick	manufac	ture 🗖 M	ade to or	der. Oth	er sections	possible o	n request.	NA: not applicat	ole			 Quick manufacture Made to order. Other sections possible on request. NA: not applicable 											

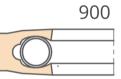



Seal housing construction Axial (face seal) types





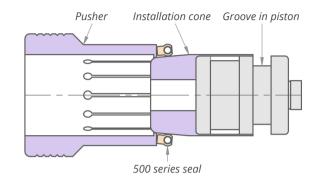


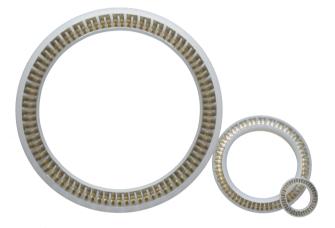


Series

		Series			Section	Р	Ø D H10	W
200	400	500	700	900	code	0/+0.1	Or Ø d h10	0/+0.3
					0145	1.45		2.4
-					0225	2.25		3.6
-					0310	3.10		4.8
-					0470	4.70		7.1
					0500	5.00		7.5
					0600	6.00	ge 11	9.0
-					0610	6.10	n pag	9.5
					0750	7.50	Per table on page 11	11.3
-					0950	9.50	Per ta	14.3
					1000	10.00		15.0
					1250	12.50		18.8
					1270	12.70		19.1
					1500	15.00		22.5
					2000	20.00		30.0
Quick m	nanufacture	Made to	order. Oth	ner sections	possible on r	equest. NA:	not applicab	le

🚱 Assembly & fitting precautions

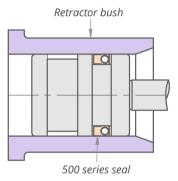

We highly recommend using separable seal housings, which make our Varioslide® seals easier to install.

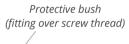

Installation in closed grooves is possible only for series 200 and 500 fitted with coil springs.

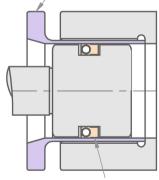
Only large diameter/cross section ratios are practical for installation in closed grooves and the operation will probably require special tools.

Please contact our technical service if you are constrained to fitting the seals into closed grooves.

The staff can provide all necessary information for making a tool like the one shown opposite.






In all cases, great care is needed when fitting Varioslide® seals, since scratching the lips or deforming the springs can result in leaks or a reduction in service life.

- The fitting operation must take place in a clean area
- Unwrap the seals at the last moment to avoid soiling them
- Lubricate the seal with a lubricant compatible with the sealed fluid to make fitting easier
- Soaking the seal in boiling water for a few minutes can also facilitate assembly
- Make sure all necessary rounded corners or bevels exist as indicated on the seal housing construction pages
- Make certain there are no ragged edges in the assembly
- Do not use common tools like screwdrivers; the arrangement must allow the seals to be pressed in by hand
- Take care with assemblies where the seal must pass over a screw thread (see diagram opposite)

In the vast majority of cases you will find that the Varioslide® can be fitted with no problems. If you come across any difficulties, please feel free to contact our technicians.

500 series seal

16

Varioslide® models - 200 series

200 <u>Series</u>	V210	V214	V215	V216
V219	V232	V234	V235	
V211-OL	V212-OL			
V210-SS		V214-SR	V232-SR	
V234-TL	V235-TL			

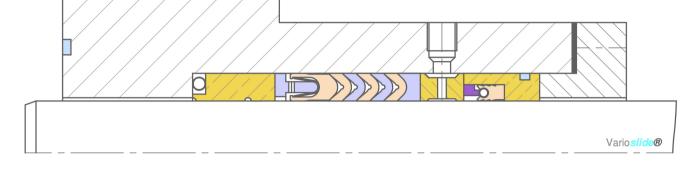
Solution Varioslide® models - 400 series

400 <u>Series</u>	V410	V414	V415	V416
V419	V430	V432	V434	V435
V436				

Varioslide® models - 500 series

500 <u>Series</u>	V510	V514	V515	V516
V519	V530	V532	V534	V535
V536	V510-OR			
V524	V525	V526	V527	
AEP	DOR			

Solution Varioslide® models - 700 series


700 <u>Series</u>	٨/710	V/711	1/712	1/717
	V710	V711	V712	V717
V714	V715	V719		
V711-OL	V712-OL	V724	V726	
V730	V731	V732		
V734	V735	V736		
V714-SF				

600 <u>Series</u>				
	V634	V635	V634-PS	
900 <u>Series</u>				
	V911	V912	V930	
0				
V934	V935	V911-OR		

😵 Study and design of special profiles

We design systems that guarantee a good seal in the most testing conditions.

Our experience is yours to take advantage of, so put us to the test. Have a look at this page to see some of our special productions.

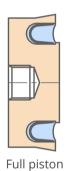
Special axial (face) seals

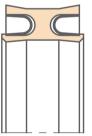
Seal with anti-extrusion washer

Seal with membrane

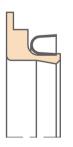
Seal with machined spring

Union seal with cams


Seal with dished washers

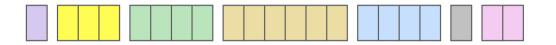

Flanged seal

Other special seals



Single action radial seals (dual expander)

Double action radial seal


Tapered seal

Cryogenic seal

Radial/axial combined seal

🥸 Varioslide® product coding system

Application

Profile number

- A = Rod or spindle seal (radial type, internal dynamic face) See pages 12 and 14
- B = Cylinder seal (radial type, external dynamic face) See page 13
- C = Face seal with internal pressure (axial type) See page 15
- D = Face seal with external pressure (axial type) See page 15
- Section code See tables on pages 12-15

See charts on pages 17-21

- Nominal diameter Value in millimetres multiplied by 100 Examples : Ø 1250.00 mm \rightarrow 125000 \emptyset 247.65 mm \rightarrow 024765 \emptyset 15.88 mm \rightarrow 001588
- Case material See pages 4 and 5

Spring material

U = 1.4301 (AISI 304) S = 1.4310 (AISI 301) - standard T = 1.4319 (AISI 302) V = 1.4401 (AISI 316) W = 1.4568 (SS 17.7 PH) Y = 2.4669 (Inconel® X750) Z = 2.4711 (Elgiloy®) X = 2.4819 (Hastelloy® C276)

Specific options and designations

- $OL \rightarrow Modified$ dynamic angle (200 and 700 series)
- $SS \rightarrow Small$ sections (200 series)
- $TL \rightarrow Two-lobe seal (200 series)$
- $PS \rightarrow Protected spring (600 series)$

 $SR \rightarrow Special rotation profile (200 series)$

 $SF \rightarrow Silicone$ filling (series 400 and 700)

 $OR \rightarrow Spring replace by O-ring (500 and 900 series)$

Other technical catalogues in print

General brochure

P2.0 Inflatable seals

U1.2 Express machining of seals and guides

P4.1 FFKM

P3.0 Detectable materials

U2.1 Duoslide IDR & EDT composite seals for rotary joints

P1.1 ASEPT-RING®

P5.1 VARIOCHEM® P113-SG

A1.1 Test laboratory

Interseal also stands for the development and use of elastomer blends, a materials analysis laboratory, and consultancy, design, and training.

14 Rue de l'égalité 59 247 FECHAIN Tel : +33 (0)3 27 80 84 84 Fax : +33 (0)3 27 80 93 10 E-mail : interseal@interseal.fr

www.interseal.fr